If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3x^2=140
We move all terms to the left:
2x^2+3x^2-(140)=0
We add all the numbers together, and all the variables
5x^2-140=0
a = 5; b = 0; c = -140;
Δ = b2-4ac
Δ = 02-4·5·(-140)
Δ = 2800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2800}=\sqrt{400*7}=\sqrt{400}*\sqrt{7}=20\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{7}}{2*5}=\frac{0-20\sqrt{7}}{10} =-\frac{20\sqrt{7}}{10} =-2\sqrt{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{7}}{2*5}=\frac{0+20\sqrt{7}}{10} =\frac{20\sqrt{7}}{10} =2\sqrt{7} $
| h(7)=0.8(3/5)^7 | | 2(7p+3)=-22 | | 4x-3x+24=-14 | | 8x-12=84 | | r(7)=(11/12)^7 | | 4x−3(x−8)=−14 | | 42=h-32 | | –64=–16+–3d | | d=284−−−√3 | | g(7)=360(0.45)^7 | | 5x+27=3280 | | (5x+10)+90+135=360 | | y=725(1-0.1)^7 | | 3(2p+1)=-21 | | (5x+10)+90-270=360 | | 73.4=b/7 | | 4x/x+5=×/x+4 | | 15x-56=-16+7x | | (5x+10)+90+270=360 | | x-5-5x=7x+8-10x | | 58.7=b/8 | | x-44=5(2x+3)-5 | | 4x+124=180 | | p(4)=8.21(1.09)^4 | | (5x-3)+(2x+2)=180 | | (5x+10)+360-90=90 | | 6x+13=4x−3 | | (5x+10)+(5x+10)=360 | | y-38=600 | | 120-x+7x=180 | | (5x+10)-360+135=270 | | C(84)=25m |